

Variable Displacement Motor A6VM

for open and closed circuits

Sizes 28...1000

Seriestures	1	
Noovineling cours standard Program	23	
Peakerressubatt50 bar	47	
DA - Hydraulic Control, Speed Related	89	
HA - Automatic Control, High Pressure Related	1013	
HD - Hydraulic Control, Pilot Pressure Related	1417	
HZ - Hydraulic Two-Position Control	18	
EZ - Electrical Two-Position Control, with Switching	19	
Solenoid		
EP - Electrical Control, with Proportional Solenoid	2022	
Unit Dimensions Size 28	23	
Unit Dimensions Size 55	24	
Unit Dimensions Size 80	25	
Unit Dimensions Size 107	26	
Unit Dimensions Size 140	27	
Unit Dimensions Size 160	28	
Unit Dimensions Size 200	29	
Unit Dimensions Size 250	30	
Unit Dimensions Size 355	31	
Unit Dimensions Size 500	32	
Unit Dimensions Size 1000	33	
Winch Motion Control Valve MHBE, Simple	34	
Function		
Drive Motion Control Valve MHBR, Double	35	
Function		

Flushing and Boost Pressure Valve	36
Speed Sensor	37
Swivel Angle Indicator	38
Preference Types	39

- Variable displacement motor with axial piston rotary group of bent axis design, for hydrostatic drives in open and closed circuits. – The motor is suitable for both mobile and industrial applications.
- The wide control range of the variable displacement motor allows it to meet the requirements of high speed and high torque.
- The displacement is infinitely variable in the range $V_{g\,\text{max}}$ to

 $V_{g \min} = 0.$

- Output speed is proportional to flow and inversely proportional to displacement.
- The output torque increases with the pressure drop between the high and low pressure sides and with increasing displacement.
- Wide control range for hydrostatic drives
- Various control and regulating devices
- Cost saving through elimination of gearbox and possibility of using smaller motors
- Compact, robust bearing system with long service life
- Low unit power
- Good starting characteristics

- Low inertia
- Wide swivel range

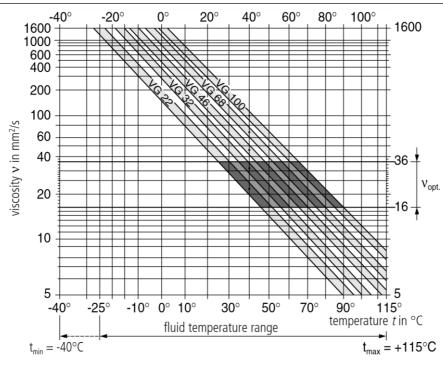
RE 91 604/05.99 replaces: 12.95

Index

Features

Ordering Code / Standard Program

Hydraulic fluid																	
Mineral oil (no code)												_					
HF-fluids sizes 28200																	
sizes 2501000	0 (only i	n conne	ection	with	drive	shaft	beari	ngs "	L")		E						
Axial piston unit																	
Bent axis design, variable displacement											6V						
Drive shaft bearings				2		<u>00 2</u>	50!	500	1000)							
Mechanical bearings (no code)				_	•		•		-	_	_						
Long-Life bearings					-		•		•		L						
Mode of operation																	
Motor (plug-in motor A6VE see RE 91606)											М						
Size										_							
Displacement V _{g max} (cm ³)			28	55	80	107	140	160	200	250	255	500	1000				
Sizes 28200: production plant Elchingen; Sizes 250100	0: produc	tion plan		55	00	107	140	100	200	230	555	500	1000]			
Control device	5. 5.0000		28	55	80	107	140	160	200	250	322	500	1000				
Hydraulic control pilot pressure increase	10 har	HD1	20	-	-	-		100	200	250		-	•	HD1			
pilot pressure related	25 bar		•	•	•	•	•	•			•		•	HD1			
	35 bar	HD3	_	_	_	-	_	_	-		0		0	HD3			
Hydraulic two-position control	55 501	HZ	_	_	_	_	_	_	_		•	•	•	HZ			
		HZ1	•	_	_	_	•	•	•	_	_	_	_	HZ1			
		HZ3	_	•	•	•	-	_	-	_	_	_	_	HZ3			
Electrical control, control voltage	12 V	EP1	•	•	•	•	•	•	•	•	•	•	0	EP1			
with proportional solenoid	24 V	EP2	•	•	•	•	•	•	•	•	•	•	0	EP2			
Electrical control voltage	12 V	EZ1	•	_	_	-	•	•	•	•	•	•	•	EZ1			
two-position control,	24 V	EZ2	•	_	_	_	•	•	•	•	•	•	•	EZ2			
with switching solenoid		EZ3	_	•	•	•	_	_	_	_	_	_	_	EZ3			
	24 V	EZ4	-	•	•	•	-	-	-	-	-	-	-	EZ4			
Automatic control, without pressure increase	j	HA1	•	•	•			•		•	•	•	0	HA1			
high pressure related with pressure increase $\Delta p =$	100 bar	HA2	•	•	•	•	•	•	•	•	•	•	0	HA2			
Hydraulic control, speed related		DA	_	_	_	_	-	_	-	•	•	•	0	DA			
$p_{st}/p_{HD} = 5/100$, <u>hydraulic valve for travel direction</u>		DA1	•	•	•	•	•	•	•	-	-	-	-	DA1			
electrical valve for travel direction	12 V	DA2	•	•	•	•	•	•	•	_	_	-	_	DA2			
+ electrical V _{g max} -switch	24 V	DA3	•	•	•	•	•			_	-	-	_	DA3			
$p_{st}/p_{HD} = 8/100$, <u>hydraulic valve for travel direction</u>	40.14	DA4	•	•	•	•	•	•	•	-	_	-	-	DA4			
electrical valve for travel direction + electrical V _{a max} -switch	<u>12 V</u>	DA5	•	•	•	•	•	•	•	_	-	-	_	DA5			
	24 V	DA6								-	-	-	-	DA6	1		
Pressure control (only for HD, EP)			28	55	80	107	140	160	200	250	355	500	1000				
without pressure control (no code)			•	•	•	•	•	•	•	•	•	•	•				
Pressure control, direct control			•	•	•	•	•	•	•	•	•	•	•	D			
direct control, with 2nd pressur	re setting	g	•	•	•	•	•	•	•	_	-	_	_	E			
remote control			-	_	-	-	-	-	-			•	•	G	1		
Override of HA-control (only for HA1, HA	2)																
without override (no code)	-									•	•	•	0				
Hydraulic override			•	•	•	•	•	•	•	•	•	•	0	Т	1		
Electrical override control voltag	je	12 V	•	•	٠	•	•	٠	•	-	-	-	_	U1			
		24 V		•				•		_	-	-	-	U2			
Electrical override control voltag	12 V	•	•	•	•	•	•	•	-	_	-	_	R1				
+ el. valve for travel direction	24 V								-	-	-	-	R2				
Series																	
														6		-	
Index																	
														3	<u> </u>]	
															1		


Hydraulic fluid		A 6	V		Μ			/	6	3	W	-	۰V			
Hydraulic fluid Axial piston unit							<u> </u>	(<u> </u>		
Drive shaft bearings																
Mode of operation																
Size																
Control device																
Series																
ndex																
Direction of rotation										—	_					
viewed on shaft end alte	ernating]								V	V					
Setting range for displacement ')							282	200	250	.100	0					
$V_{qmin} = 0$ to 0,8 V_{qmax} (no code)							•		-	_						
$V_{gmin} = 0 \text{ to } 0.4 V_{gmax}$ V_{gm}	$_{max} = V_{gma}$, to C),8 \	/ g max			_			•	1					
$V_{gmin} > 0.4 V_{gmax}$ to 0.8 V_{gmax} V V_{gmax}	$_{max} = V_{gma}$	" to C),8 \	/ g max			_			•	2					
Seals	28 5				140	160	200	250	355	500) 100	0				
FKM (fluor-caoutchouc)			•		•		•	•	•	•		V				
		- 1	-	-	-	-	-	-	-				1			
Shaft end				-		-		-								
Splined shaft DIN 5480	• •	•	•	•	-	•	•	-	-	-	-		-			
Parallel shaft with key DIN 6885		•	•		•	•	-	•	•	•	•	Z	-			
Parallel Shalt with Key Div 6865		-	_	-	-	-	-	•			•	P				
Mounting flange																
ISO 4-hole	•	•	•	•	•	•	•	•	-	-	-	В				
ISO 8-hole		-	_	-	-	-	-	-	•	•	•	Η				
Service line connections				28	55	80	107	140	160	20(250	355	500) 100	0	
Ports A, B: SAE rear end		01	0	•	•	•	•	•	•	•	•	•	•	•	010	T'
(metric threads)			7	•	•	•	•	•	•	•	•	•	•	0	017	1
Ports A, B: SAE on (opposite) sides		02	0	•	•	•	•	•				•	•	•		
(metric threads)			7	•	•	•	•	•	•	•	•	•	•	0		_
Port plate for mounting		08		-	-	-	-	-	-	-	•	-	-	-	080	
a motion control valve	l	4-	8	-	-	-	-	-	-	-	•	-	-	-	088	
Ports A, B: SAE on (opposite) sides + rear e		15 37		-	-	-	-	-	-		•	0	•	0	150	-
Port plate with pressure relief valve, for mounting a motion control valve ²))	37 38		-	-	-	•	-	-	-	-	+-	-	+-	370 380	-
		JÕ								-			1 -		1200	J
Valves																
without valve		\rightarrow	0	-												
with flushing and boost pressure valve			7	-												
with built-on motion control valve (only for	i size 25	0)	8													
Speed sensor				28	55	80	107	140	160	20) 250	355	500	100	0	
without speed sensor (no code)											•	•	•	•		
suitable for fitting speed sensor				•	•			•		•				0	D	
Swivel angle indicator																
without swivel angle indicator (no cod	le)			•	•	•	•	•	•	•		•	•	-		1
with optical swivel angle indicator	-			-	-	-	-	-	-	-	•	•	•	•	V	1
with electronical swivel angle indicator	r			_	_	-	_	_	_		•	•	•	•	E]
																_
Start of control																-
																1
Start of control at V_{gmin} (standard for HA) at V_{gmax} (standard for HD, HZ, EP, EZ, DA	2)			•	•	•	•	•	•	•	•	•	•	•	A B	-

 $^{?}$) only possible in connection with controls HD, HA1, HA2, $\overset{\text{\tiny gmn}}{\text{EP}}$

= Preferred program (preferred types see page 39) • ___4

short term at a max. permissible leakage oil temperature t_{max} =

Technical Data

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistance fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

```
v_{opt} = operating viscosity 16...36 mm<sup>2</sup>/s
```

referred to the loop temperature (closed circuit) or tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

Sizes 28...200 v_{min} = 5 mm²/s, short term at a max. permissible temperature t_{max} = 115°C

 $v_{max} = 1600 \text{ mm}^2/\text{s}$,

short term on cold start (t_{min} = -40°C)

Sizes 250...1000

 v_{min} = 10 mm²/s,

 $v_{max} = 1000 \text{ mm}^2/\text{s}$,

short term on cold start ($t_{min} = -25^{\circ}C$)

Selection diagram

Please note that the max. fluid temperature of 115°C is also not exceeded in certain areas (for instance bearing area).

90°C

At temperatures of -25°C up to -40°C special measures may be required for certain installation positions. Please contact us for further information.

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the loop (closed circuit) or the tank temperature (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (v_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C the operating temperature is 60°C. Within the operating viscosity range (v_{opt} ; shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and motor speed and is always higher than the circuit temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 28...200 or 90°C for sizes 250...1000. If it is not possible to comply with the above condition because of extreme operating parameters or high ambient temperatures we recommend housing flushing via port U or use of a flushing valve (see page 36). Please consult us.

Technical Data

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum purity grade of:

9 to NAS 1638

18/15 to ISO/DIS 4406 is necessary.

At very high temperatures of the hydraulic fluid (90°C to max. 115°C, not perm. for sizes 250...1000) at least cleanless class

8 to NAS 1638

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Operating pressure range

Maximum pressure at port A or B (pressure data to DIN 24312)

Sizes 28...200

Nominal pressure p_N

	601
Peak pressure p _{max}	450
	bar*

*) Attention: shaft end **Z** with drives of radial force loads at the drive shaft (pinion V-belt drives) necessitate reduction of the nominal pressure to $p_N = 315$ bar (please contact us).

Sizes	250	1	000
Sizes	250	1	000

Nominal pressure p _N	350 bar
Peak pressure p _{max}	400
	bar

With pulsating loads above 315 bar we recommend using the model with splined shaft A (sizes 28...200) or with splined shaft Z (sizes 250...1000).

The summ of the pressures at ports A and B may not exceed 700 bar.

Direction of flow

clockwise rotation anti-clockwise rotation

Speed range

There is no limitation on minimum speed n_{min} . If uniformity of rotation is required, however, speed n_{min} should not be allowed to fall below 50 rpm. See table

on page 6 for max. permissible speeds.

Installation position

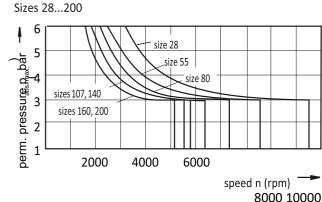
Optional. The motor housing must be filled with fluid prior the commissioning, and must remain full whenever it is operating.

For extensive information on installation position, please consult our data sheet RE 90 270 before completing your design work.

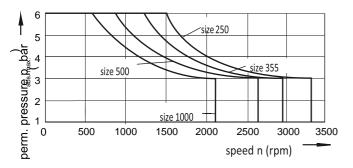
Long-Life-bearings (sizes 250...1000)

(for high life expectancy and use of HF-fluids)

The outer dimensions of the axial piston motors are identical to standard design (without long life bearings). The change from standard design to long life bearing system is possible. We recommend to apply bearing flushing at port U.


Case Drain Pressure

Shaft seal ring FKM (fluor-caoutchouc)


The lower the speed and the case drain pressure the higher the life expectation of the shaft seal ring. The values shown in the diagram are permissible loads of the seal ring and shall not be exceeded.

400 At stationary pressure loads in the range of the max. admissible bar leakage pressure a reduction of the life experience of the seal ring will result.

For a short period (t < 5 min.) pressure loads up to 5 bar independent from rotational speeds are permissible respectively for sizes 28...200.

Sizes 250...1000

Special operation conditions may require limitations of these values.

Note:

- max. permissible motor speeds are given in the table on page 6.

max. permissible housing pressure p_{abs. max} 6 bar
 The pressure in the housing must be the same as or greater
 than the external pressure on the shaft seal.

Influence housing pressure to start of control

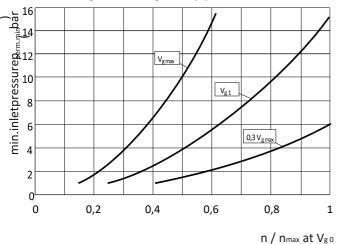
The housing pressure influences the start of control of the variable motor for the following controls: An increase of the housing pressure leads to an increase of the start of control for the HA control (only sizes 250...1000), HA.T and HD. For the DA control a lowering of the start of control is effected.

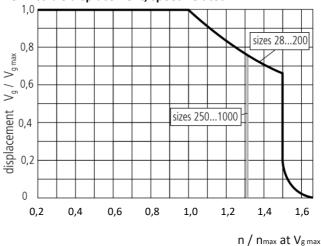
The setting on the test bench in the factory prior to delivery is $p_{abs} = 1$ bar (sizes 250...1000) respectively $p_{abs} = 2$ bar housing pressure (sizes 28...200).

Technical Data

Size			28	55	80	107	140	160	200	250	355	500	1000
Displacement 1)	Vg max	cm ³	28,1	54,8	80	107	140	160	200	250	355	500	1000
	Vgo	CM ³	0	0	0	0	0	0	0	0	0	0	0
Max. speed	$n_{\mbox{\tiny max}}$ at $V_{\mbox{\tiny gmax}}$	rpm	5550	4450	3900	3550	3250	3100	2900	2500	2240	2000	1600
(at max. permitted flow)	n_{max} at $V_g < V_{g,1}$	rpm	8750	7000	6150	5600	5150	4900	4600	3300	2950	2650	2100
	$V_{g,1}$	cm ³	18	35	51	68	88	101	126	190	270	385	762
	n_{max} at V_{g0}	rpm	10450	8350	7350	6300	5750	5500	5100	3300	2950	2650	2100
Max. perm. flow	q v max	L/min	156	244	312	380	455	469	580	625	795	1000	1600
Torque constants	$T_k \text{ at } V_{g \text{max}}$	Nm/ba	r 0,446	0,87	1,27	1,70	2,23	2,54	3,18	3,98	5,65	7,96	15,92
Max. torque	T _{max} at V _{g max 2})	Nm	179	349	509	681	891	1019	1273	1391	1978	2785	5571
Case volume		L	0,5	0,75	1,2	1,5	1,8	2,4	2,7	3,0	5,0	7,0	16,0
Moment of inertia about drive axis	J	kgm²	0,0014 0,061	0,004	2 0,008	30 0,01	.27 0,0	207 0,0)253 0,	0353	0,102	0,178	0,550
Weight (approx.)	m	kg	16	26	34	47	60	64	80	90	170	210	430

Table of values (theoretical values, without considering η_{mh} and η_{v} ; values rounded)


¹⁾ The minimum and maximum displacement are infinetely adjustable, see ordering code page 3


(note for sizes 250...1000: $V_{g min} = 0,2$, $V_{g max}$, $V_{g max} = V_{g max}$, when there is no indication in the order!)

²⁾ sizes 28...200: Δp = 400 bar; sizes 250...1000: Δp = 350 bar

Minimum inlet pressure at port A (B)

Permissible displacement, speed related

In order to avoid damage of the variable motor a minimum inlet pressure at the inlet zone must be assured. The minimum inlet pressure is related to the rotational speed and swivel angle (displacement) of the variable motor.

Technical Data

Output drive

Permissible axial and radial loading on drive shaft.

The values given are maximum values and not permissible for continuous operation.

Size			28	55	80	107	140	160	200	250	355	500	1000
а	mm		12,5	15	17,5	20	22,5	22,5	25	41	52,5	52,5	67,5
$F_{q max}$	Ν		5696	10440	13114	15278	17808	20320	22896	1200 ¹)	15001)	1900¹)	2600 ¹)
± F _{ax max}	Ν	+ F _{ax max}	315	500	710	900	1030	1120	1250	4000	5000	6250	10000
		- F _{ax max}	315	500	710	900	1030	1120	1250	1200	1500	1900	2600
± F _{ax perm.} /	'bar	N/bar		4,6	7,5	9,6	11,3	13,3	15,1	17,0	2)	2)	2) 2)

¹⁾ Axial piston unit in stationary or in bypass operation, please contact us when appearing higher forces!

²⁾ Please contact us!

Code explanation a = distance of F_q from

shaft shoulder

F_{q max} = max. perm. radial force at distance a

in kW

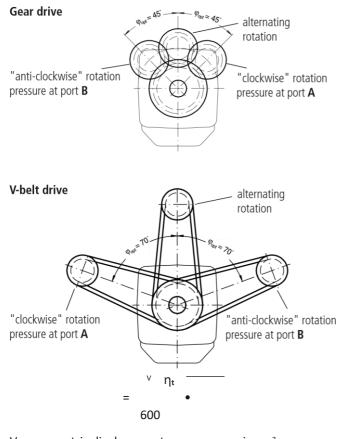
± F _{ax max}	= max. perm when axial pressure	The d 282 - F _{ax ma}				
$\pm F_{ax perm}$	/bar= perm. ax	ial 1	forc	e/bar operating pressure	+ F _{ax m}	life
					Optin	nal force direction
	Flow	qv	=	V _g •n	in	By means of app bearing load caus be reduced. An
	Output speed	n	=	1000 • η _ν q _ν		bearing can be re
				• 1000 • ŋ _v	in rpm	I
	Output torque	Т	=			
			=	Vg		
	or	т	=	V _g • Δp • η _{mh}	in Nm in Nm	
	Output power	Ρ	=	20 • p		
				1,59 • V _g • Δp • η _{mh}		
				100		
				$T_{\kappa} \bullet \Delta p \bullet \eta_{mh}$		
				2 p • T • n T • n		
				= 60 000 9549		

q•∆p

(at intermittent operation)

ax. axial force must be noted by sizes

$F_{\text{ax max}}$	= increased bearing
	life
- F _{ax max}	= reduced bearing life


ossible)

on of F_q (valid for sizes 28...200)

ppropriate force directions of F_q the

used by inside rotary group forces can an optimal life expectation of the reached.

Calculation of size

 V_g = geometric displacement per rev. in cm³ T = torque in Nm Δp = pressure differential in bar n = speed in

rpm T_{κ} = torque constants in Nm/bar η_{ν} = volumetric

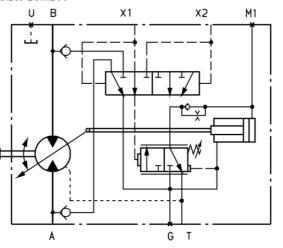
efficiency η_{mh} = mech.-hyd. efficiency η_t = overall efficiency

DA Hydraulic Control, Speed Related

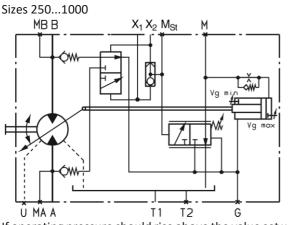
The A6VM variable motor with speed related hydraulic control is particularly suitable for use in hydrostatic transmissions in conjunction with variable pump A4VG with DA control.

The swivel angle of the hydraulic motor is controlled by means of the pilot pressure determined by the input speed of the A4VG variable pump and by the operating pressure.

An increase in the pump input speed and thus in the pilot pressure causes the motor, in relation to the existing operating pressure, to swivel towards a lower displacement volume (lower torque, higher speed).


DA, DA1, DA4 Hydraulic control, speed related with hydraulic valve for travel direction

Through the control pressure X_1 or X_2 this value is switched on/off dependend on the direction of rotation (travel


direction). direction of rotation operation pressure in

control pressure in		
clockwise	Α	X1
anti-clockwise	В	X ₂

Hydraulic control, speed related DA1, DA4 Sizes 28...200

Hydraulic control, speed related DA

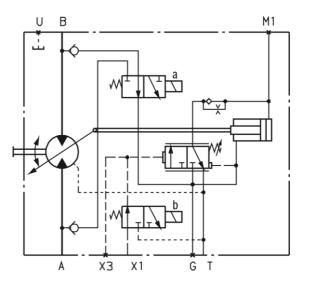
If operating pressure should rise above the value set with the pressure control, the motor is then swivelled towards a higher displacement volume (higher torque, lower speed).

When designing a drive using DA control, note also the technical data of variable pump A4VG with DA control.

A computer program is available at Brueninghaus Hydromatik to help you with the design of your drive. Full details from our Mobile Sales Division on request.

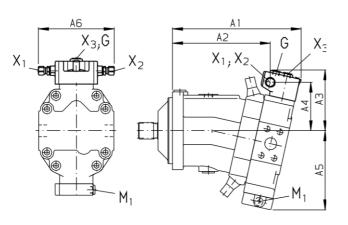
DA2, DA3, DA5, DA6 Hydraulic control, speed related with el. valve for travel direction + el. $V_{g max}$ -switching process

The electrical valve is operated by the pressure spring or switch solenoid (a) dependent on the rotational direction (travel direction).

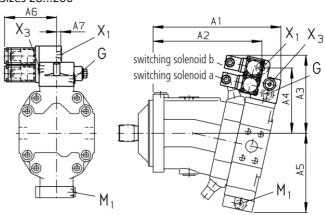

Through connection of the electric current at the switch solenoid (b) override of the control is possible and the motor is switched to max. swivel angle (high torque, low speed) (el. $V_{g \max}$ -switching process).

DA2, DA5	switching solenoid a, b 12 V DC; 1,6 A
(min.) DA3, DA6	switching solenoid a, b 24 V DC; 0,8 A
(min.)	

direction of rotationoperating pressure inswitching solenoid a


clockwise	А	energised
anti-clockwise	В	de-energised

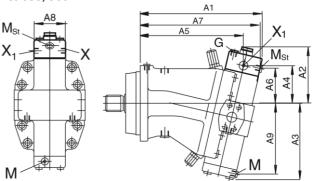
Hydraulic control, speed related DA2, DA3, DA5, DA6 Sizes 28...200


Unit Dimensions DA

Unit dimensions DA1, DA4 Sizes 28...200

Before finalising your design, please request a certified drawing.

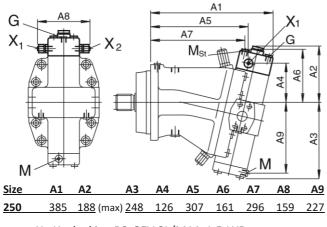
Unit dimensions DA2, DA3, DA5, DA6 Sizes 28...200


Size	A1	A2	A3	A4	A5	A6	ports X ₁ , X ₂
28	216	152	120	93	136	160	locking GE- 8LM
55	242	179	122	94	151	160	locking GE- 8LM
80	271	207	127	100	167	160	locking GE- 8LM
107	291	216	134	107	175	174	locking GE- 8LM
140	322	247	141	115	195	174	locking GE- 8LM
160	329	254	141	115	197	174	locking GE- 8LM
200	346	271	146	119	209	174	locking GE- 8LM

Size A1 A2 Α3 A4 A5 A6 A7 port X₁ 175 28 218 158 130 136 110 8,5 M14x1,5 55 245 202 159 132 151 110 8,5 M14x1,5 80 271 230 162 138 167 110 M14x1,5 8,5 292 107 239 173 146 175 112 8,5 M14x1,5 140 270 323 181 154 195 112 8,5 M14x1,5 277 160 330 181 153 197 112 8,5 M14x1,5 200 347 294 185 158 209 112 8,5 M14x1,5

X₁: pilot pressure port

Unit dimensions DA


Sizes 355, 500

Size A1 A2 A3 A4 A5 A6 A7 **A8** A9 355 108 257 432 203 (max) 279 140 327 123 422 500 490 215 (max) 306 151 423 137 481 123 284 ports X1, X2: M14x1,5

Unit dimensions DA

Size 250

ports X1, X2: locking BO-GEV 8L/M14x1,5-WD

HA Automatic Control, High Pressure Related

With the automatic, high pressure related control, setting of the displacement is effected automatically as a function of the operating pressure.

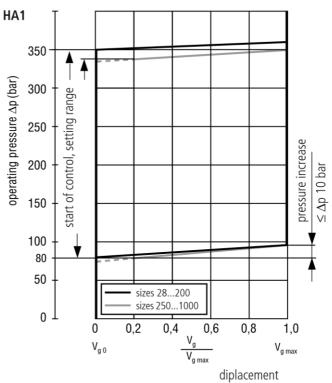
This control device measures the operating pressure at A or B internally (no pilot line required) and swivels from V_{gmin} with increasing working pressure to V_{gmax} once the pressure setting of the control is reached. Standard version HA1, HA2:

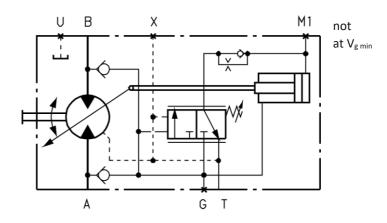
Start of control at $V_{g min}$ (min. torque, max. perm. speed) End of control at $V_{g max}$ (max. torque, min. speed)

HA1: Virtually no pressure increase

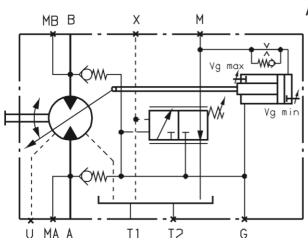
An working pressure increase of $\Delta p \le 10$ bar results in an increase of the displacement from 0 cm³ to V_{g max} (sizes 28...200) respectively from 0,2 V_{g max} to V_{g max} (sizes 250...1000).

Start of control, setting range


sizes 28200	 80 – 350 bar
sizes 25010000	80 – 340 bar


When ordering please state required start of control in clear text, e.g.: start of control at 300 bar

Automatic control, high pressure related HA1


Note:

 Because of safety reasons hoist winch drives are allowed with control devices with start of control (standard design with HA)!

Sizes 250...1000

Automatic control, high pressure related HA1

Sizes 28...200

HA Automatic Control, High Pressure Related

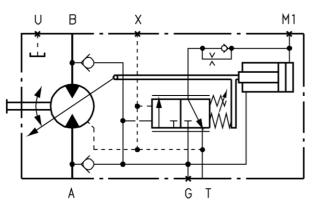
HA2: Pressure increase $\triangle p = 100$ bar

An working pressure increase from $\Delta p = 100$ bar results in an increase of the displacement from 0 cm³ to V_{g max} (sizes 28...200) respectively from 0,2 V_{g max} to V_{g max} (sizes 250...1000).

า									
5	350		ſ						
~	<u>300</u>	-				\square		ease	
r d'ul		lge						eincr	Jar
((http://www.escurahord	250	startofcontrol, settingrange						pressureincrease	∆p100bar
tingr	ش 200 ⁻	,setti						pr	
		ntrol							_
c	⁵ 150 ⁻	ofcol							
	100 -	start	\vdash						
	80	V							
	50 -	_				sizes 28 sizes 250.			
	0 -	E.	0 0	,2	0,4 V _g	0,6	0,8	01	Ι,
		Ň	/ _{g 0}		V _g V _{g max}	dis	V _{g n} placeme		

Τ

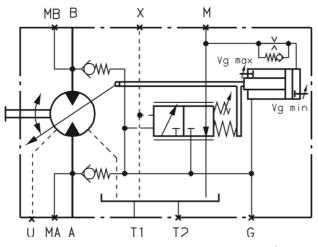
HA2

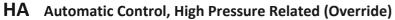

 Start of control, setting range

 sizes 28...200
 80 – 350 bar

 sizes 250...10000
 80 – 250 bar

When ordering please state required start of control in clear text, e.g.: start of control at 200 bar

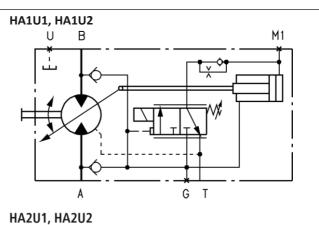

Sizes 28...200

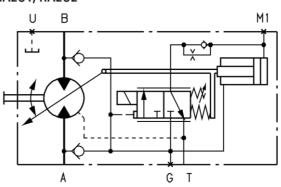


Automatic control, high pressure related HA2

Automatic control, high pressure related HA2

Sizes 250...1000


U1, U2 Electrical override of pressure setting

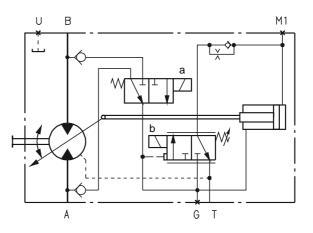

On version HA1 the high pressure related control can be overridden by means of an electrical signal to a switching solenoid. The override causes the motor to swivel to its maximum angle.

Switching	solenoid	de-	≙	energisedno override
Switching	solenoid			energisedmotor set to $V_{\rm g}$
max				

- **U1** switching solenoid 12 V DC, 1,6 A (min.)
- **U2** switching solenoid 24 V DC, 0,8 A (min.)

Start of control adjustable between 80 and 300 bar (state required setting in clear text when ordering)

R1, R2 Electrical override of pressure setting, with electrical valve for travel direction


On the HA control version the high pressure related control can be overridden by a electrical signal to a switching solenoid b. The override swivels the variable to a max. swivel angle. switching solenoid b $\hat{=}$ de-energised override switching solenoid b $\hat{=}$ energised motor set to $V_{g max}$

The travel directional valve assures that the preselected pressure side of the variable motor always controls the swivel angle even at a change of the high pressure side (for instance travel drive down hill). The swivel of the variable motor to a bigger displacement can be avoided. In relation of a change of direction (travel direction) the travel directional valve is actuated through the pressure spring or the switch solenoid a. direction of rotation operating pressure in swtiching solenoid a

clockwise		Α	de-energised				
ant	i-clockwise	В	energised				
R1	switching solenoid a	a, b 12 V DC	1,6 A (min.)				
R2	switching solenoid a	a, b 24 V DC	0,8 A (min.)				

HA1R1, HA1R2

HA2R1, HA2R2

т

Hydraulic override of pressure setting

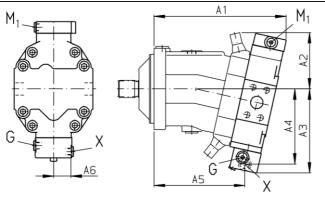
For the HA control the start of control can be influenced by applying a pilot pressure at port X.

1 bar control pressure lowers the start of control by 17 bar (sizes 28...200) or 8 bar (sizes 250...1000).

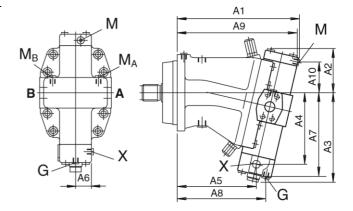
Example (sizes 28...200):

Start of control setting	300 bar	300 bar
Pilot pressure at X	0 bar	10 bar
Start of control	300 bar	130 bar

If the override is only required to set the max displacement (motor swivel to $V_{g max}$), a pilot pressure of up to 100 bar max. is permissible.

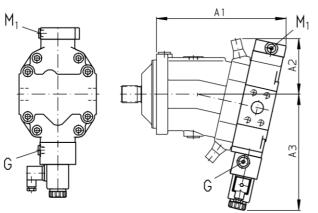

(Circuit diagram and unit dimensions see control HA1, HA2, port X open, at sizes 250...1000 no connection from X to T)

Unit Dimensions HA


Unit dimensions HA1, HA2, HA1T, HA2T Sizes 28...200 Before finalising your design, please request a certified drawing.

Unit dimensions HA1, HA2, HA1T, HA2T Sizes 250...1000

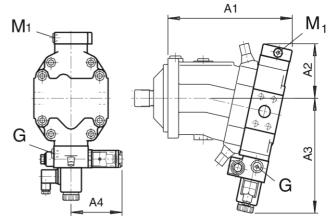
28	209	97	151	133	134	34,5	
55	237	104	159	142	159	33,4	
80	268	114	171	152	183	34,5	
107	290	122	183	164	199	40,5	
140	316	132	198	178	225	40,5	
160	323	137	200	181	232	40,5	
200	339	143	209	190	245	40,5	


<u>Size A1 A2 A3 A4 A5 A6 A7 A8 A9 A10</u>

port X: M 14x1,5 (plugged, open for design HA.T)

port X: M 14x1,5 (plugged, open for design HA.T)

Unit dimensions HA.U1, HA.U2


Sizes 28...200

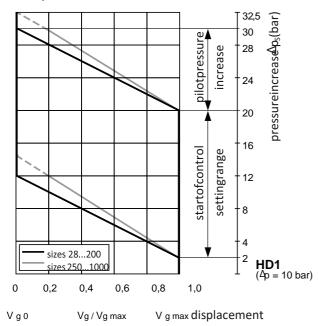
250	384	161	275	210	248	48,5	248	278	377	116
355	432	181	300	234	279	54	275	315	425	132
500	489	196	325	258	322	61,5	300	359	483	144
1000										

Unit dimensions HA.R1, HA.R2

Sizes 28...200

Size	A1	A2	A3	Size	A1	A2	A3	A4	
28	209	97	216	28	209	97	216	110	
55	237	104	224	55	237	104	224	110	
80	268	114	238	80	268	114	238	110	
107	282	122	249	107	282	122	249	112	
140	316	132	263	140	316	132	263	112	
160	323	137	266	160	323	137	266	112	
200	339	143	275	200	339	143	275	112	
									-

HD Hydraulic Control, Pilot Pressure Related

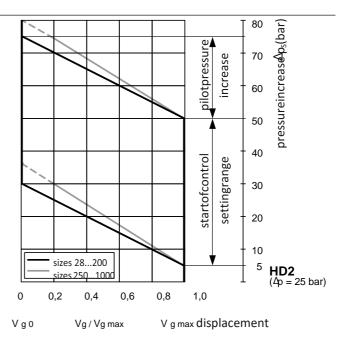

The pilot pressure related hydraulic control allows infinite variation of the motor displacement in relation to a pilot pressure signal. The control function is proportional to the pilot pressure applied at port X.

HD1: Pilot pressure increase $\Delta p_s = 10$ bar

A pilot pressure increase of 10 bar at port X results in a decrease of the displacement from $V_{g max}$ to 0 cm³ (sizes 28...200) respectively from $V_{g max}$ to 0,2 $V_{g max}$ (sizes 250...1000).

Start of control, setting range _____ 2 – 20 bar

Standard setting: start of control at 3 bar (end of control at 13 bar)



HD2: Pilot pressure increase $\triangle p_s = 25$ bar

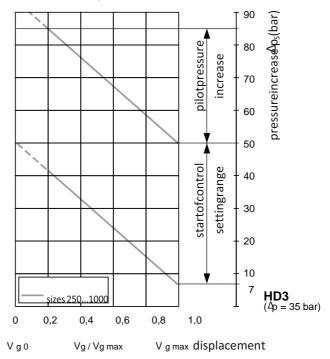
A pilot pressure increase of 25 bar at port X results in a decrease of the displacement from $V_{g\ max}$ auf 0 cm³ (sizes 28...200) respectively from $V_{g\ max}$ to 0,2 $V_{g\ max}$ (sizes 250...1000).

Start of control, setting range ______ 5 – 50 bar

Standard setting: start of control at 10 bar (end of control at 35 bar)

Standard version:

- start of control at Vg max (max. torque, min. speed)


- end of control at V_{g min} (min. torque, max. perm. speed)

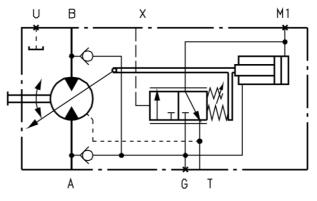
HD3: Pilot pressure increase $\Delta p_s = 35$ bar

A pilot pressure increase of 35 bar at port X results in a decrease of the displacement from $V_{g\,max}$ to ~0,2 $V_{g\,max}$ (sizes 250...1000).

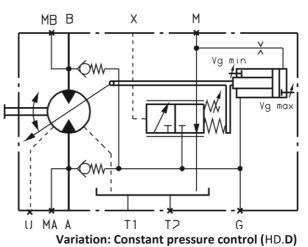
Start of control, setting range _____ 7 – 50

bar Standard setting: start of control at 10 bar (end of control at 45 bar) Note:

- The start of control and the HD curve is influenced by the housingpressure. An increase of the housing pressure

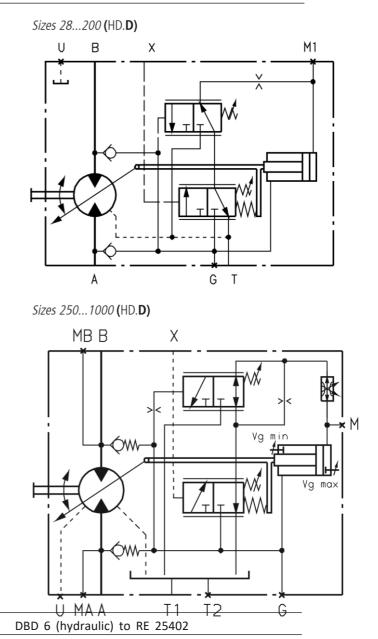

causes an increase of the start of control and thus a parallel displacement of the curve characteristic (see page 5).

- The required control oil is taken from the high pressure side; forthis, a minimum operating pressure of 15 bar is necessary. If it is necessary to operate the control at an operating pressure of <15 bar, a boost pressure of min. 15 bar must be applied at port G via an external check valve (max. perm. pilot pressure 100 bar).
- Due to internal leakage a leakage flow of approx. 0,3 L/min occursat port X. In order to avoid the influence of the curve characteristic the leakage flow must be led out through the control module into the tank.
- When ordering please state required start of control in clear text,
- e.g.: start of control at 10 bar


Unit dimensions control HD, see pages 23...33

HD Hydraulic Control, Pilot Pressure Related

Hydraulic control, pilot pressure related HD1, HD2, HD3 Sizes 28...200

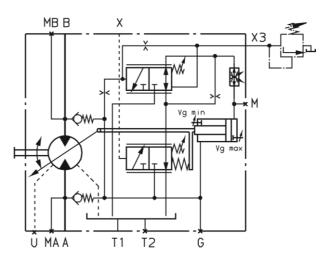

Sizes 250...1000

The constant pressure control is superimposed on the HD function. Should system pressure rise as a result of the load torque or reduction of the motor swivel angle, when the setting of the constant pressure control is reached the motor is swivelled out to a higher angle.

As a result of the increased displacement and consequent pressure reduction, the control deviation is eliminated. By increasing the displacement the motor produces a higher torque at a constant pressure.

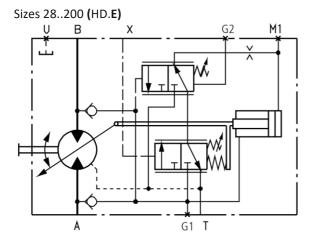
Setting range of constant pressure control valve: sizes 28...200 ______ 80 - 400 bar sizes 250...1000 80 - 350 bar

HD Hydraulic Control, Pilot Pressure Related


Variation: Remote constant pressure control (HD.G)

The remote pressure control controls the motor when reaching the set pressure command signal continuously until it reaches the max. displacement $V_{g\mbox{ max}}.$ A pressure relief valve (not supplied), which is separate to the motor, is responsible for the control of the internal pressure cut-off valve. As long as the pressure command signal has not been obtained, the valve is, in addition to the spring force, pressurised from both sides, and is held closed. The pressure command signal is between 80 bar and 350 bar. On reaching the pressure command signal at the separate pressure relief valve, this opens, whereby the pressure on the spring side is allowed to flow to tank. The internal pilot valve operates and the motor swivels to maximum displacement $V_{g max}$. The pressure difference at the pilot valve is set as standard to 25 bar. We recommend the following as a separate pressure relief valve:

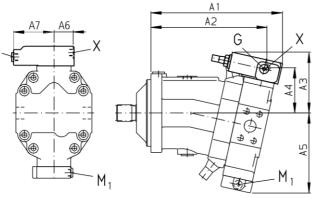
The max. line length should not exceed


2 m.

Sizes 250...1000 (HD.**G**)

Variation: pressure control with 2nd pressure setting (HD.E)

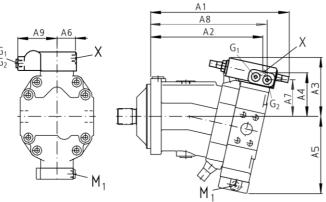
Through input of an external control pressure at port G2 the setting of the pressure regulator can be overridden and a 2nd pressure setting can be realised. The pressure signal at port G2 must be between 20 and 50 bar (when ordering please state the 2nd pressure setting in clear text).



Unit Dimensions HD

Before finalising your design, please request a certified drawing.

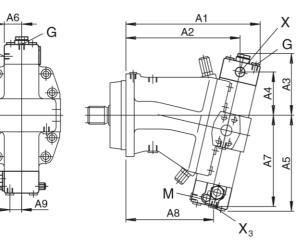
Unit dimensions HD.D


Sizes 28...200

Size	A1	A2	A3	A4	A5	A6	A7	
28	214	189	119	87	136	35,5	88,5	
55	241	216	120	89	151	35,5	88,5	
80	269	244	126	95	167	35,5	88,5	
107	291	258	133	101	175	40,5	88,5	
140	323	290	141	108	195	40,5	88,5	
160	329	297	141	108	197	40,5	88,5	
200	346	313	145	112	209	40,5	88,5	

Unit dimensions HD.E

Sizes 28...200


Size	A1	A2	A3	A4	A5	A6	A7	A8	A9
28									
55	272	216	126	89	151	35,5	76	232	88,5
80	301	244	129	95	167	35,5	79	259	88,5
107	311	258	136	101	175	40,5	86	270	88,5
140									
160	349	297	144	108	197	40,5	93	309	88,5
200	369	313	147	112	209	40,5	98	324	88,5

G1: port for synchronous control of a number of units and for remote control pressure M 14x1,5 (plugged)

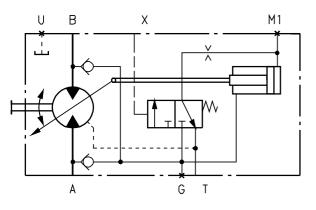
G2: port for 2nd pressure setting

M 14x1,5 (plugged)

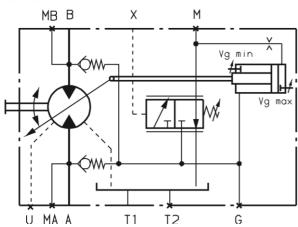
Unit dimensions HD.D, HD.G Sizes 250...1000

Size	A1	A2	A3	A4	A5	A6	A7	A8	A9
250	385	327	188	123	272	48,5	256	276	35
355	432	366	203	137	288	54	271	287	33
500	490	417	215	148	306	61,5	287	314	23
1000	618	537	274	189	388	70	373	420	51

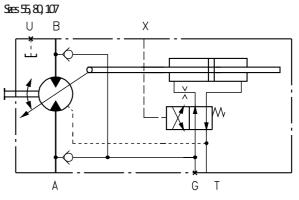
pilot pressure port X₃: M 14x1,5 (open at HD.G, plugged at HD.D)

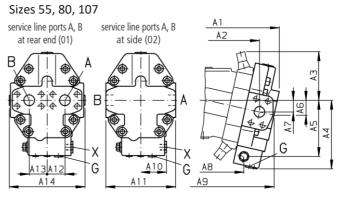

Unit dimensions of control HD1 and HD2: see pages 22...32

HZ Hydraulic Two-Position Control


The hydraulic two-position control allows the displacement to be set to $V_{g\mbox{ min}}$ or $V_{g\mbox{ max}}$ by application or non-application of pilot pressure to port X.

The required control oil is taken from the high pressure side; for this, a minimum operating pressure of 15 bar is necessary. If it is necessary to operate the control at an operating pressure of <15 bar, a boost pressure of min. 15 bar must be applied at port G via an external check valve.


Hydraulic two-position control HZ1 Sees 28, 140, 160, 200

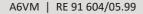

Hydraulic two-position control HZ3

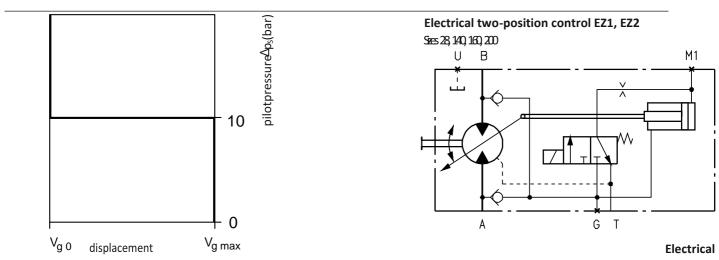
Hydraulic two-position control HZ

Before finalising your design, please request a certified drawing.

Unit dimensions HZ3 *)

Size	A1	A2	A3	A4	A5	A6	A7	A8	A9
55	227	183	100	146	117	31	24	151	215
80	255	208	114	161	132	35	27	172	242
107	270	220	122	173	143	38	30	182	256


Size	A10	A11	A12	A13	A14	ports A, B	port X
55	61	152	37,5 3	57,5 1	60	SAE 3/4"	M14x1,5
80	61	164	42	42	172	SAE 1	M14x1,5
107	61	180	42	42	188	SAE 1	M14x1,5

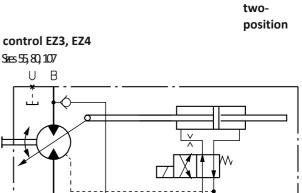

*) unit dimensions of control HZ (sizes 250...1000) and HZ1 (sizes 28, 140, 160, 200) see pages 22-32

Standard version:

- start of control at $V_{g max}$ (max. torque, min. speed)

- end of control at V_{g min} (min. torque, max. perm. speed)

EZ Electrical Two-Position Control with Switching Solenoid

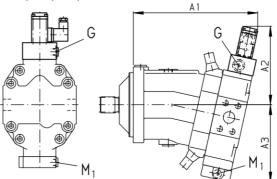

The electrical two-position control with switching solenoid allows the displacement to be set to $V_{g\,\text{max}}$ or V_g min by energising or deenergising the solenoid.

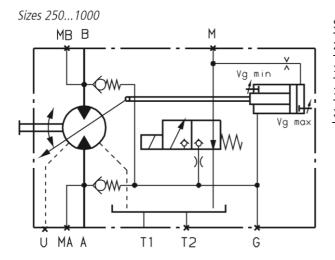
Solenoid de-ernergised motor \$et to V_{g max}

Solenoid ernergised	motor s et to V _{g min}

EZ1, EZ3	switching solenoid 12 V DC, 26W (EZ1) 30W
(EZ3)	
EZ2, EZ4	switching solenoid 24 V DC, 26W (EZ2) 30W
(EZ4)	

The required control oil is taken from the high pressure side; for this, a minimum operating pressure of 15 bar is necessary. If it is necessary to operate the control at an operating pressure of <15 bar, a boost pressure of min. 15 bar must be applied at port G via an external check valve.


GΤ

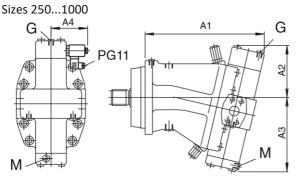

Electrical two-position control EZ1, EZ2 Unit dimensions EZ1, EZ2

А

Sizes 28, 140, 160, 200

U

Size	A1	A2	A3	
28	216	163	136	
140	321	184	195	
160	328	184	197	
200	344	188	209	


250	385	171	248	125
355	432	182	279	128,5
500	490	197	306	135,5
1000				

Unit dimensions EZ3, EZ4

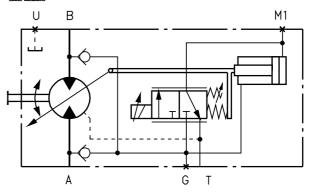
Sizes 55,			Ē		A1 CV CV CV CV CV
Size	A1	A2	A3	A4	
55	227	100	146	124	
80	255	114	161	124	
107	270	122	173	124	
/			~		

(additional dimensions of the port plate see page 18, HZ3-control)

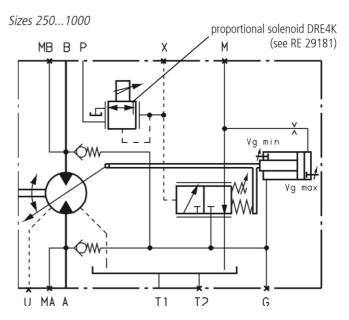
Size A1 A2 A3 A4

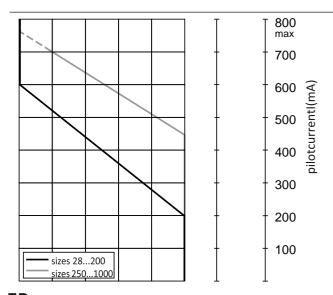
EP Electrical Control, with Proportional Solenoid

The electrical control with proportional solenoid or proportional valve (sizes 250...1000) allows infinite variation of the motor displacement in relation to an electrical signal.

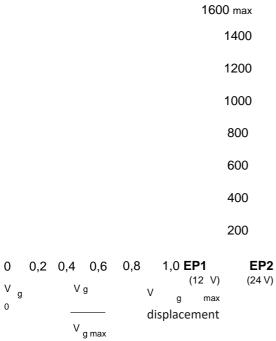

The control function is proportional to the electrical control current applied.

For the sizes 250...1000 an external pressure of p_{min} = 30 bar is necessary (p_{max} = 100 bar) at port P for the control oil supply.


Sizes 28	3200	control current	
	control voltage	start of control	end of control
	(DC)	(V _{g max})	$(V_{g \min} = 0)$
EP1	12 V	400 mA	1200 mA
EP2	24 V	200 mA	600 mA
		control	
Sizes 25	501000	current	
	control voltage	start of	end of
		control	control
	(DC)	(V _{g max})	(V _{g min} = 0,2 V _g
			max)


EP1	12 V	900 mA	1400 mA
EP2	24 V	450 mA	700 mA

Electrical control with proportional solenoid EP1, EP2 Ses 2220



Electrical control with proportional solenoid EP1, EP2

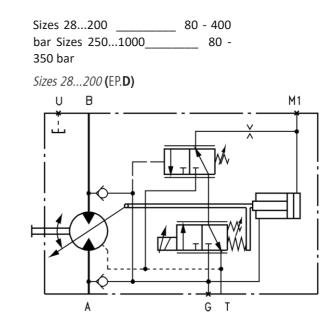
EP Electrical Control, with Proportional Solenoid

Standard version:

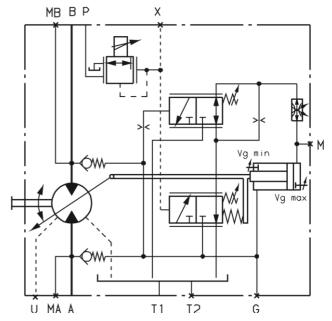
- start of control at Vg max (max. torque, min. speed)

- end of control at $V_{g\,\text{min}}$ (min. torque, max. perm. speed)

The required control oil is taken from the high pressure side; for this, a minimum operating pressure of 15 bar is necessary. If it is necessary to operate the control at an operating pressure of <15 bar, a boost pressure of min. 15 bar must be applied at port G via an external check valve (max. perm. pilot pressure: 100 bar).

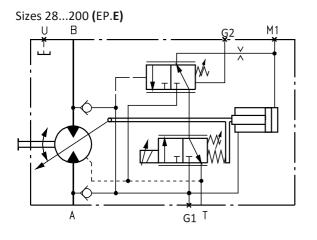

Adjustment of the control speed or limiting of the displacement (limiting of swivel) range by electrical means is possible using the following control devices: Proportional amplifier PV ______ see RE 95023

Chopper amplifier CV	see RE
95029 Electrical amplifier 2014/15	
see RE 95027	
Flootrical amplifiar V/T 2000 carios 40	600 DF 20

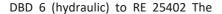

Electrical amplifier VT 2000, series 40 ______ see RE 29908 Variation: Direct constant pressure control (EP.D)

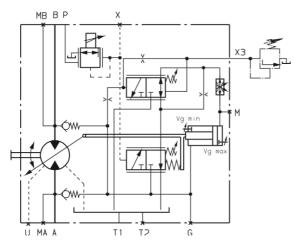
The constant pressure control is superimposed on the EP function. Should system pressure rise as a result of the load torque or reduction of the motor swivel angle, when the setting of the constant pressure control is reached the motor is swivelled out to a higher angle.

As a result of the increased displacement and consequent pressure reduction, the control deviation is eliminated. By increasing the displacement the motor produces a higher torque at a constant pressure. Setting range of constant pressure control valve:



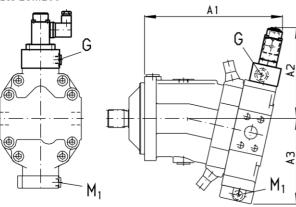
Variation: pressure control with 2nd pressure setting (EP.E)

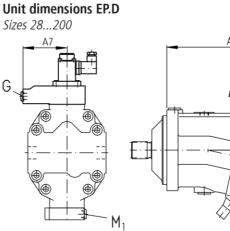

Through input of an external control pressure at port G2 the setting of the pressure regulator can be overridden and a 2nd pressure setting can be realised. The pressure signal at port G2 must be between 20 and 50 bar (when ordering please state the 2nd pressure setting in clear text).

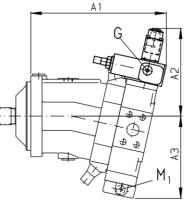

Variation: Remote constant pressure control (EP.G)

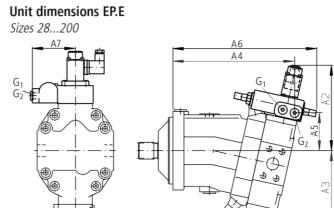
The remote pressure control controls the motor when reaching the set pressure command signal continuously until it reaches the max. displacement $V_{g\,max}$. A pressure relief valve (not supplied), which is separate to the motor, is responsible for the control of the internal pressure cut-off valve.

As long as the pressure command signal has not been obtained, the valve is, in addition to the spring force, pressurised from both sides, and is held closed. The pressure command signal is between 80 bar and 350 bar. On reaching the pressure command signal at the separate pressure relief valve, this opens, whereby the pressure on the spring side is allowed to flow to tank. The internal pilot valve operates and the motor swivels to maximum displacement V_{g max}. The pressure difference at the pilot valve is set as standard to 25 bar. We recommend the following as a separate pressure relief valve:




max. line length should not exceed 2 m. *Sizes 250...1000* (EP.G)


Unit Dimensions EP



G

 M_1

Size	A1	A2	A3	A4	A5	A6	A7	
28	214	166	136				88,5	
55	241	167	151	231	73	271	88,5	
80	269	173	167	259	79	299	88,5	
107	290	179	175				88,5	
140	322	187	195				88,5	
160	329	187	197	309	93	351	88,5	
200	345	191	209	325	97	368	88,5	
G1: port for synchronous control of a number of units and for remote								
C	ontrol pres	ssure				ſ	vl 14x1,	5 (plugged)
G2: port for 2nd pressure setting				١	M 14x1,5 (plugged)			

Unit dimensions EP1, EP2

Unit dimensions EP.D, EP.G

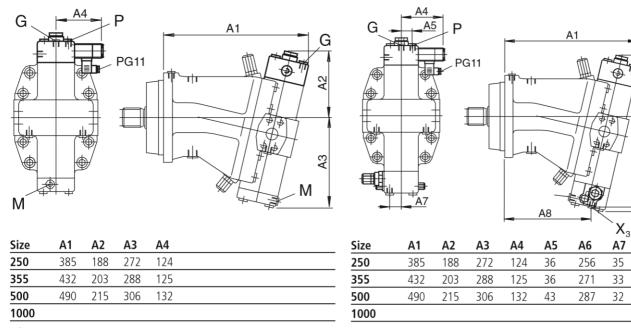
 M_1

G

A2

A6 A3

A8

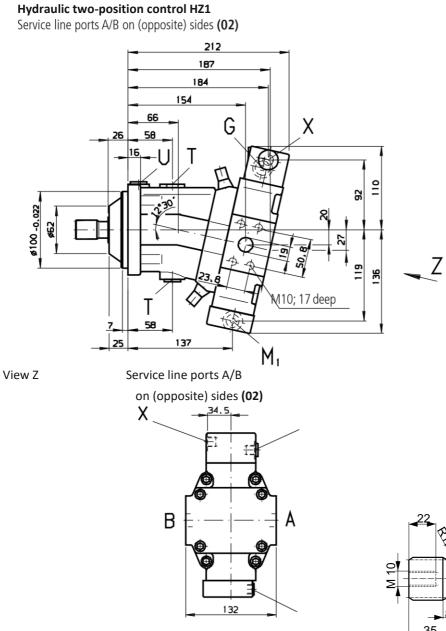

267

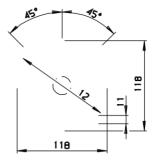
287

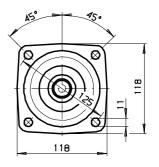
314

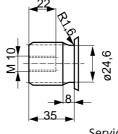
Sizes 250...1000

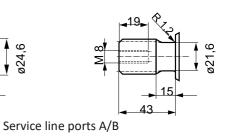
Sizes 250...1000


pilot pressure port P: M 14x1,5


pilot pressure port P: M 14x1,5


pilot pressure port X₃: M 14x1,5 (open at EP.G, plugged at EP.D)

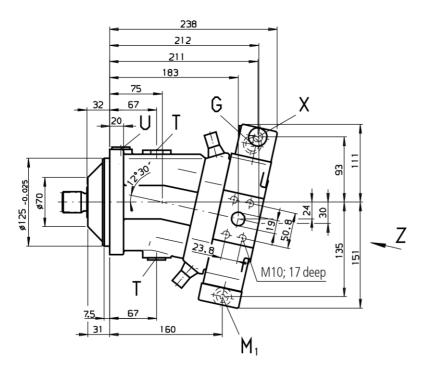

Unit Dimensions Size 28


Hydraulic control, pilot pressure related HD1, HD2

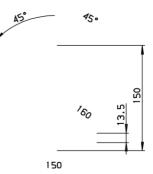
Shaft ends

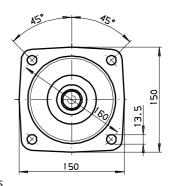
Α

Splined shaft W 30x2x30x14x9g DIN 5480


Ζ

Splined shaft, W 25x1,25x30x18x9g DIN 5480

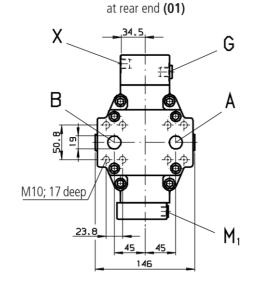

Unit Dimensions Size 55


Hydraulic control, pilot pressure related HD1, HD2

Service line ports A/B on (opposite) sides (02)

A; B Service line ports SAE 3/4" 420 bar (6000 psi) high

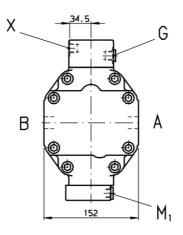
pressure series

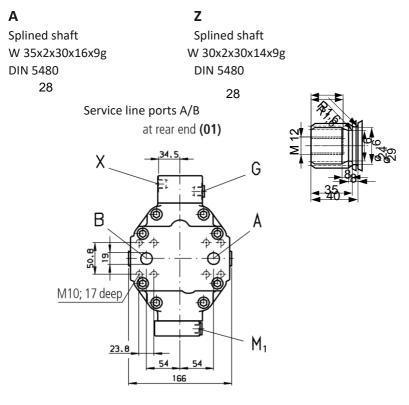

G Port for synchronous control of a number of M 14x1,5 units and for remote control pressure (plugged)

Х	Pilot pressure port	M 14x1,5 T	Case
	drain port	M 18x1,5	

U Flushing port (plugged) M 16x1,5

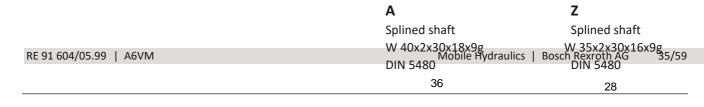
M1Test port for control pressure (plugged)M14x1,5View ZService line ports A/B


on (opposite) sides (02)


Connections

A6VM | RE 91 604/05.99

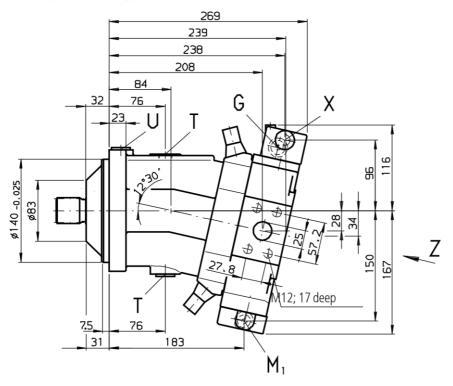
Before finalising your design, please request a certified drawing.

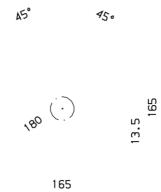


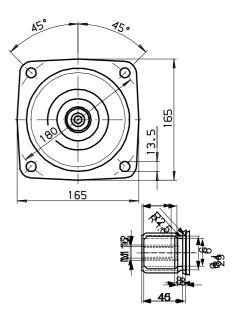
Shaft ends

Connections

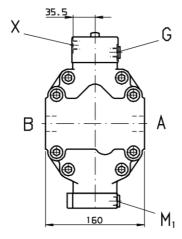
- A; B Service line ports SAE 3/4" 420 bar (6000 psi) high pressure series
- G Port for synchronous control of a number of M 14x1,5 units and for remote control pressure (plugged)
- X Pilot pressure port M 14x1,5
- T Case drain port M 18x1,5
- UFlushing port (plugged) M 18x1,5

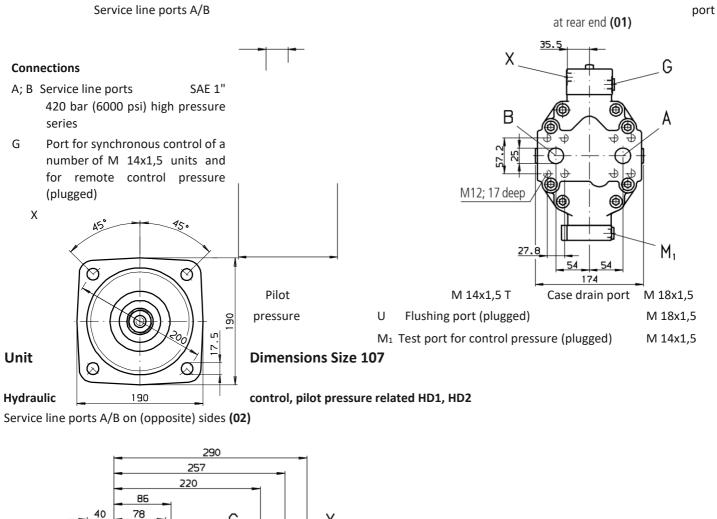


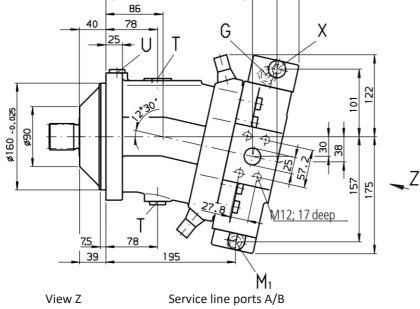

Shaft ends

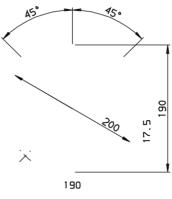

Unit Dimensions Size 80

Hydraulic control, pilot pressure related HD1, HD2

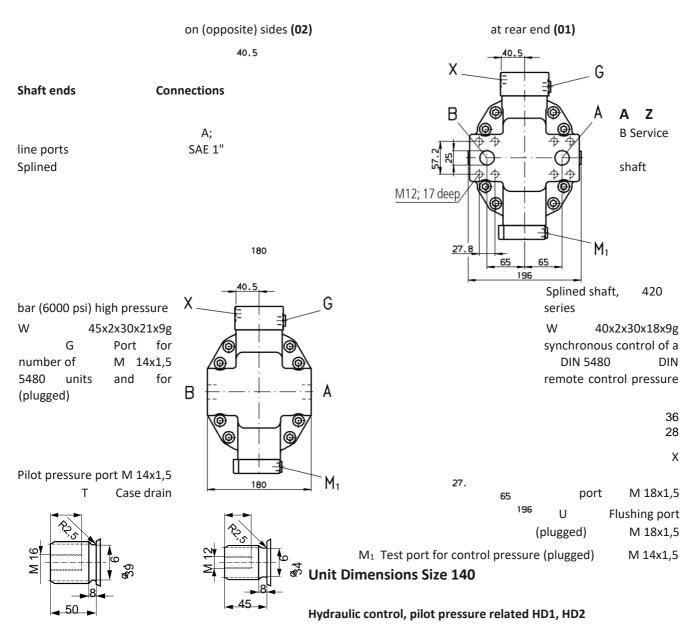

Service line ports A/B on (opposite) sides (02)



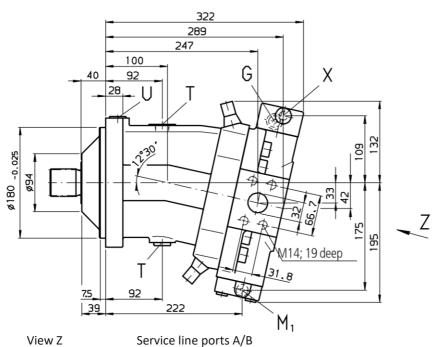




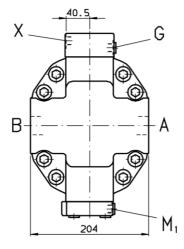
M₁ Test port for control pressure (plugged) M 14x1,5 View Z Service line ports A/B on (opposite) sides **(02)**



Service line ports A/B

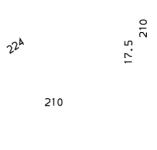

A6VM | RE 91 604/05.99

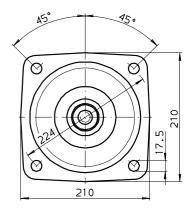
45°

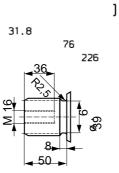

Before finalising your design, please request a certified drawing.

Hydraulic two-position control HZ1

Service line ports A/B on (opposite) sides (02)


on (opposite) sides (02)


Shaft ends

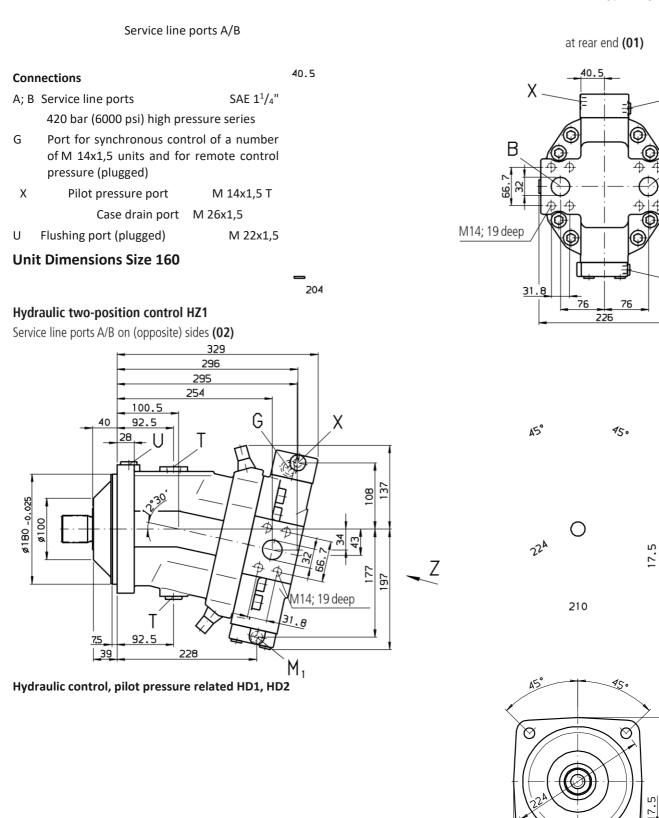

Ζ

Splined shaft, W 45x2x30x21x9g DIN 5480

45.

G

M₁

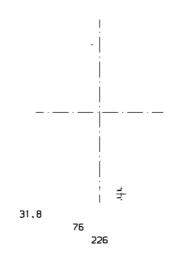

210

210 ഗ

Ø

210

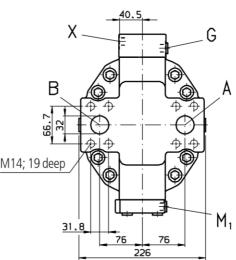
Ø


M₁ Test port for control pressure (plugged) M 14x1,5 View Z Service line ports A/B

A6VM | RE 91 604/05.99

Before finalising your design, please request a certified drawing.

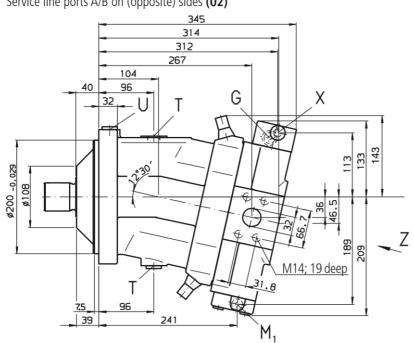
on (opposite) sides (02)

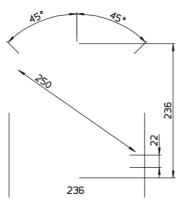

40.5 Χ. G ❻ ـ $\widehat{}$ A В A \odot \odot ۲ \odot M_1 204

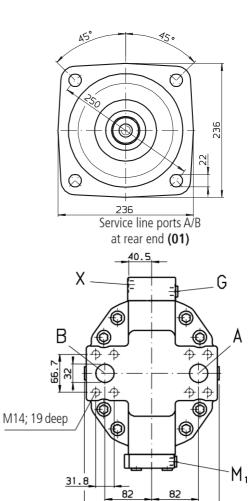
Shaft ends

Α		Z		
Splin	ed shaft	Splined shaft,		
W 50	x2x30x24x9g	W 45x2x30x21x9	9g	
DIN 5	5480	DIN 5480		
	36	36		
	Service line ports	A/B		
Conn	ections			
А; В	Service line ports	SAE 1 ¹ /4"		
	420 bar (6000 psi) high pressure series		at rear	e
G	Port for synchronous control of a number of M 14x1,5 units and for remote control pressure (plugged)	40.5	X40.	5
Х	Pilot pressure port M 14x1,5 T Case drain port M 26x1,5		 <u>M14; 19 deep</u>	
U (plug	Flushing port ged) M 22x1,5	1 204	<u>31.8</u>	

end **(01)**

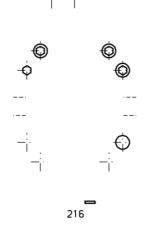


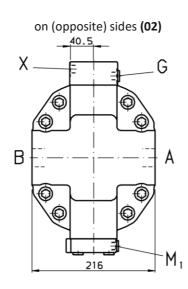

Ā

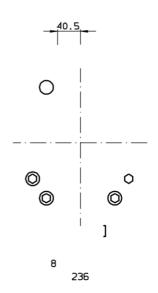

Unit Dimensions Size 200

Hydraulic control, pilot pressure related HD1, HD2 Hydraulic two-position control HZ1

Service line ports A/B on (opposite) sides (02)

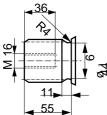






236

M1Testportforcontrolpressure (plugged)M14x1,5View ZService line portsA/B



Shaft ends

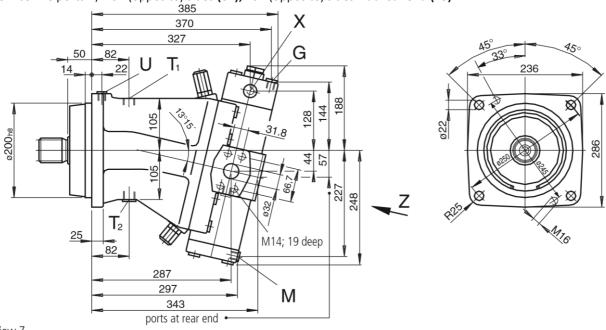
Α

Splined shaft W 50x2x30x24x9g DIN 5480 36

Connections

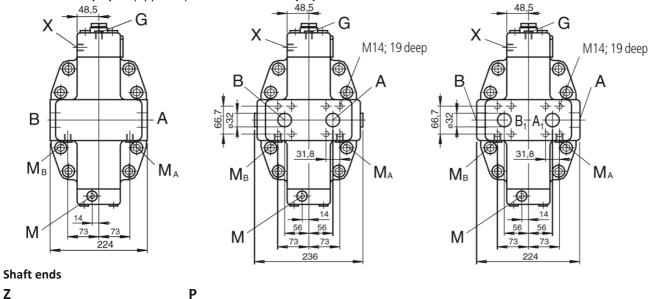
A; B Service line ports	SAE 1 ¹ /4"	
420 bar (6000 psi) high pressure series		

G	Port for synchronous control of a number of	M 14x1,5
	units and for remote control pressure (plugge	d)
X Pilo	M 26x1,5	


U	Flushing port (plugged)	M 22x1,5
U	Flushing port (plugged)	M 22x1,5

M1 Test port for control pressure (plugged) M 14x1,5

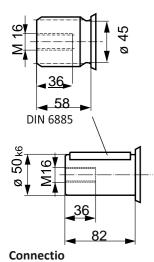
Unit Dimensions Size 250


Hydraulic control, pilot pressure related HD1, HD2, HD3 Hydraulic two-position control HZ

Service line ports A/B on (opposite) sides (02); on (opposite) sides + at rear end (15)

View Z

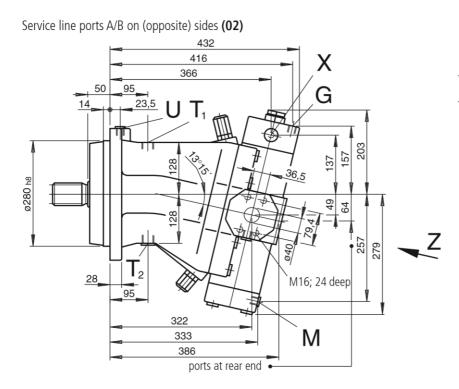
Service line ports A/B Service line ports A/B Service line ports A / B / A_1 / B_1 on (opposite) sides (02) at rear end (01) on (opposite) sides + at rear end (15)

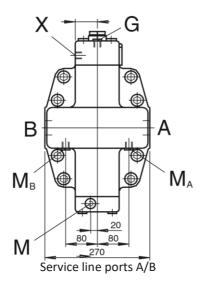


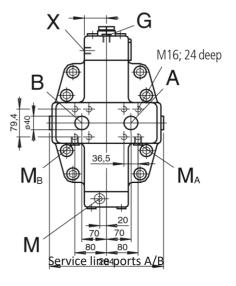
Z Splined shaft W 50x2x30x24x9g

Parallel shaft with key AS 14x9x80

A; B Service line ports SAE 1 ¹ /4" high pressure	e series
A ₁ ; B ₁ Additional service line ports at port plate 1: $1^{1}/_{4}$ "	5 SAE
 G Port for synchronous control of a number of 14x1,5 units and for remote control (plugged) 	
X Pilot pressure port	M 14x1,5
T ₁ , T ₂ Case drain ports	M
U Flushing port	22x1,5 M
M _A , M _B Test ports	14x1,5 M
M Test port for control pressure (plugged)	14x1,5 M
	14x1,5




Unit Dimensions Size 355


Hydraulic control, pilot pressure related HD1, HD2 Hydraulic two-position control HZ

Before finalising your design, please request a

View Z

A6VM | RE 91 604/05.99

Before finalising your design, please request a certified draw

at	rear	end	(01)	
----	------	-----	------	--

54

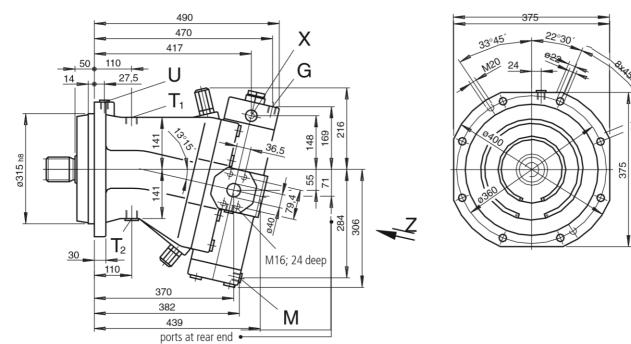
on (opposite) sides (02)

54

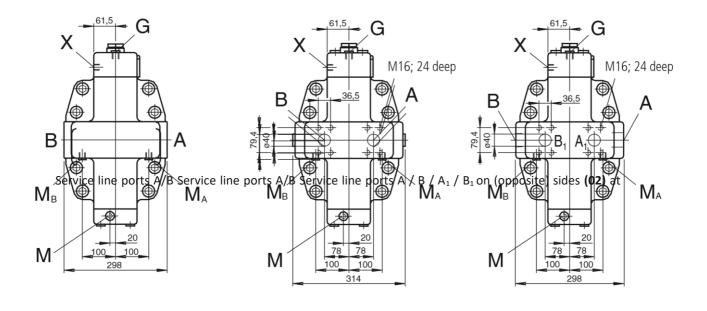
Shaft ends Connections Ζ Ρ Splined shaft Parallel shaft W 60x2x30x28x9g with key AS 18x11x100 DIN 5480 DIN 6885 and for remote control pressure (plugged) M20 20 55 60 \geq Ø Ø 42 82 105

Unit Dimensions Size 500

Hydraulic control, pilot pressure related HD1, HD2, HD3 Hydraulic two-position control HZ


Service line ports A/B on (opposite) sides (02); on (opposite) sides + at rear end (15)

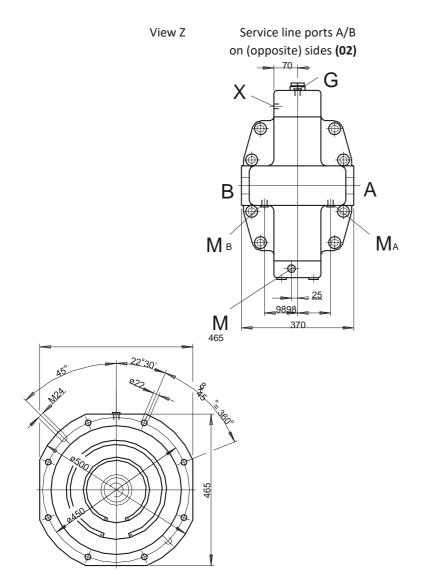
A,B	Service line ports	SAE 1 ¹ / ₂ "
	high pressure series	

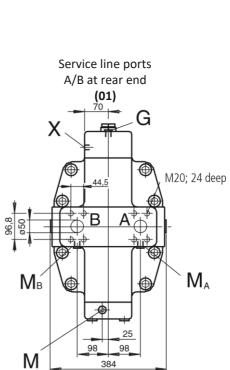

G Port for synchronous control of a number of M 14x1,5 units

X Pilot J	pressure port	M 14x1,5 T ₁ ′ ¹ ₂	Case drain ports
M 33	к2		
U	Flushing port		M 14x1,5
M _A , N	M B Test ports		M 14x1,5
М	Test port for contro	ol pressure (plugge	ed) M 14x1,5

Before finalising your design, please request a

Shaft ends


Connections


Z	Р	A,B Service line ports	SAE 1 ¹ / ₂ "
Splined shaft	Parallel shaft	high pressure series	
W 70x3x30x22x9g	with key AS 20x12x100	A1; B1 Additional service line ports at port pla	te 15 SAE 1 ¹ / ₂ "
DIN 5480	Din 6885	G Port for synchronous control of units and for remote control press	
ø 62, 7	Ø 70 ^{m6}	X Pilot pressure port M 14x1 33x2	.,5 T_1 , T_2 Case drain ports M
42	42	U Flushing port	M 18x1,5
≼ 80 ►	→ 105	M _A ′ ^M _B Test ports	M 14x1,5
		M Test port for control pressure (plugged) M 14x1,5
Unit Dimens	ions Size 1000		598
Hydraulic two-	rol, pilot pressure relate position control HZ ts A/B on (opposite) sides (537 147 14 41,5 U T_1 68 68 35 147 T_2 476 486

ports at rear end 🕳

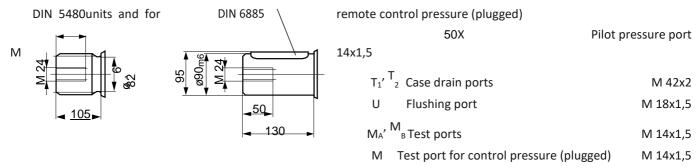
555

Ζ

Shaft ends

Z Splined shaft W 90x3x30x28x9g

Ρ


Parallel shaft with key AS 25x14x125

Connections

Service line ports	SAE 2 "
high pressure	Μ
series	18x1,5
Port for synchronous control of a number of	
	high pressure series Port for synchronous control of a number

A6VM | RE 91 604/05.99

Before finalising your design, please request a certified draw

Winch Motion Control Valve MHB...E, Simple Funciton

Variable motor A6VM, with winch motion control valve MHB..EVariable motor A6VM, with winch motion control valve MHB...EDesign with start of control at Vgmax (standard for HD, EP)Hoist:direction of rotation of the motor "clockwise"Hoist:direction of rotation of the motor "anti-clockwise"

А

GΤ

valve: B)

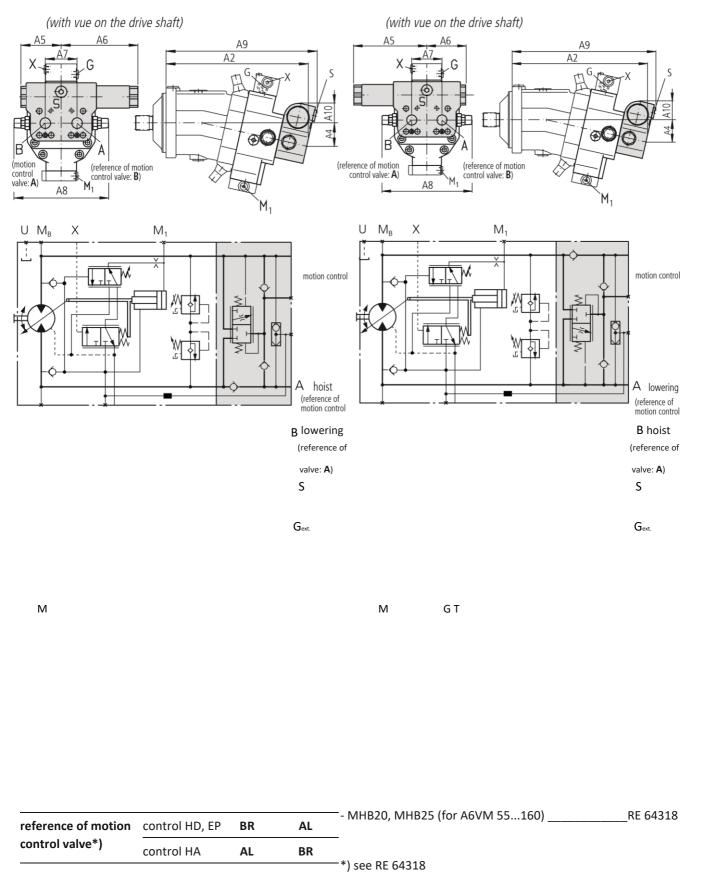
B) valve:

Note:

- Because of safety reasons hoist winch drives are not allowed withcontrol devices with start of control at $V_{g\,min}$ (standard design for HA)!
- For the assembly of a motion control valve on a variable motor with the start of control at $V_{g max}$ (standard design for HD, EP) the port A of the motion control valve is mounted on the port B of the variable motor. This has to be taken into consideration when a motion control valve is used (direction of hoisting, design BR or AL) see table below.

Hoist: direction of rotation of the motor"clockwise" "anticlockwise"

A, B Service line ports SAE, 420 bar (6000 psi) high pressure series


S Boosting (plugged)

Connections

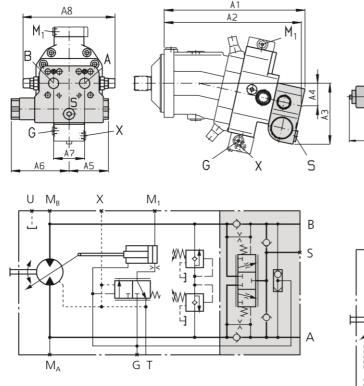
The motion control valve is not included in the type references, please order seperately! We recommend total supply through Brueninghaus Hydromatik.

Further informations for motion control valve MHB:

Before finalising your design, please request a

Unit dimensions (Variable displacement motor A6VM with winch motion control valve MHB...E)

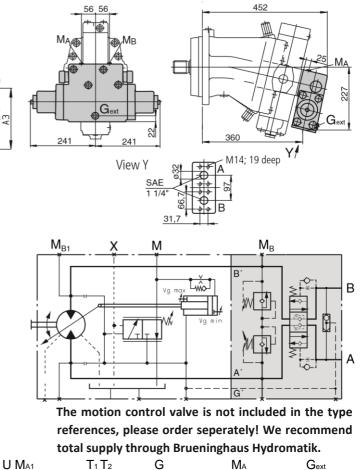
moto	or A6VM	motion control valve MHBE			dimensions									
size	plate	type	ports A, B	port S	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
55	38	MHB 20 11	SAE 3/4"	M22x1,5	311	302	143	50	98	187	75	222	325	
80	38	MHB 20 18	SAE 1"	M22x1,5	340	331	148	55	98	187	75	222		
107	37	MHB 20 18E	SAE 1"	M22x1,5	362	353	152	59	98	187	84	234		
107	38	MHB 25 18	SAE 1 ¹ / ₄ "	M27x2	380	370	165	63	120,	5 214	84	234		
140	38	MHB 25 18	SAE 1 ¹ / ₄ "	M27x2					120,	5 214	84			
160	38	MHB 25 18	SAE 1 ¹ / ₄ "	M27x2	417	407	169	68	120,	5 214	84			
250		on demand			1									


Drive Motion Control Valve MHB...R, Double Function

Variable motor A6VM, with drive motion control valve MHB...R Variable motor A6VM, with drive motion control valve

MHB

Design with start of control at $\rm V_{g\,min}$ (standard for HA) Sizes 55...160


Design with start of control at $V_{g min}$ (standard for HA) Size 250

Connections

A, B Service line ports SAE, 420 bar (6000 psi) high pressure series

S Boosting (plugged)

Before finalising your design, please request a

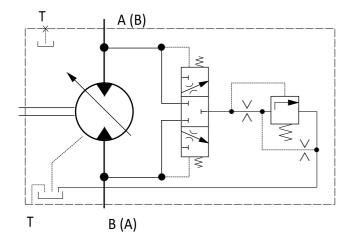
Further informations for motion control valve MHB:

- MHB20, MHB25 (für A6VM 55...160) RE 64318 RE 64316

- MHB30 (für A6VM 250) ___

Flushing and Boost Pressure Valve

The flushing and boost pressure valve is set at a fixed opening pressure of 16 bar and serves to maintain the minimum boost pressure (set primary valve accordingly).


A fixed flow of fluid is taken via an orifice from the low pressure side of the circuit and fed into the motor housing. This flow is then passed back to tank with the case drain fluid. Fluid thus removed from the closed circuit must be made up by means of the boost pump.

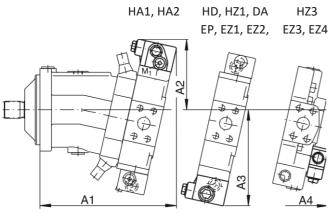
Unit dimensions (Variable displacement motor A6VM with drive motion control valve MHB...R)

moto	or A6VM	motion control valve MHBE			dimensions							
size	plate	type	ports A, B	port S	A1	A2	A3	A4	A5	A6	A7	A8
55	38	MHB 20 11	SAE 3/4"	M22x1,5	311	302	143	50	96	139	75	222
80	38	MHB 20 18	SAE 1"	M22x1,5	340	331	148	55	96	139	75	222
107	37	MHB 20 18E	SAE 1"	M22x1,5	362	353	152	59	96	139	84	234
107	38	MHB 25 18	SAE 11/4"	M27x2	380	370	165	63	120,5	165,5	84	234
140	38	MHB 25 18	SAE 1 ¹ / ₄ "	M27x2					120,5	214	84	
160	38	MHB 25 18	SAE 1 ¹ / ₄ "	M27x2	417	407	169	68	120,5	165,5	84	
250	08	MHB 30	SAE 1 ¹ / ₄ "	-				see abc	ove			

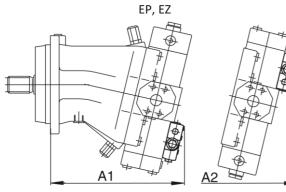
The valve is mounted onto the variable motor or integrated in the control device.

Different orifice sizes may be used to select varying flows of flushing fluid.

28, 55	3,5 L/min	651766/503.12.01.01	-
80	5 L/min	419695/503.12.01.01	-
107	8 L/min	419696/503.12.01.01	-
160, 200	10 L/min	419697/503.12.01.01	-
250	10 L/min		-
355	16 L/min		-
500	20 L/min		-
1000	25 L/min		-


* standard flushing volumes

(For sizes 28...200 flushing volumes of 3,5 - 10 L/min can be supplied. If a flushing volume different from the standard flushing volume is required, please indicate the requested orifice in clear text when ordering.)


Flows (at low	pressure	$\Delta p_{ND} = 25 \text{ bar})^*$
Size	Flow	Orifice No.

¹⁾ Exception: A6VM 250../63..088 (design with mounted motion control valve MHB 30, please state the design of the motion control valve in clear text)!

Sizes 28...200

Size	A1	A2	A3	A4	
28	214	125	161	_	
55	243	133	176	236	
80	273	142	193	254	
107	288	144	200	269	
140	321	154	218	_	
160	328	154	220	_	
200	345	160	231	_	
Sizes 25	50100	0	HC), HZ, DA	HA1, HA2

Size	A1	A2	
250	357	402	
355	397	446	
500	440	504	
1000	552		

Version A6VM...D ("suitable for fitting speed sensor") includes gearing on the rotary group.

Sizes 28...200

> 28 80

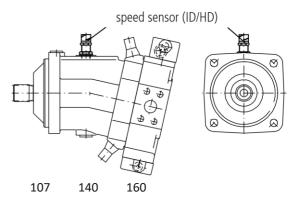
Speed Sensor

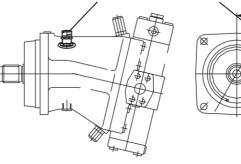
A speed-proportional signal is produced by means of the rotating, splinded rotary group which can be picked up by a suitable sensor and fed back for evaluation ..

The sensor is screwed into the upper leakage port T (sizes 28...200) respectively in the additional port for the rotational speed sensor (sizes 250...1000). For the sizes 140...200 the port T is equipped with an adapter piece (M18x1,5) for the installation of the sensors.

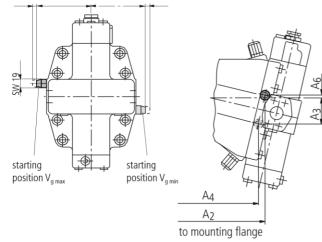
No. of teath	40	54	58	67	72	75	80	Size 55
length of thread 19,9	19,9	19,9	19,9	31,9	31,9	31,9	200	

Size	250	355	500	1000		
No. of teath	78	90	99			
length of thread (mm)sensor with variable length of						

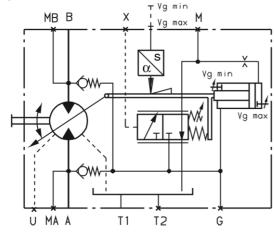

length of thread (mm)sensor with variable length of thread

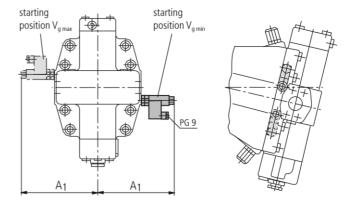

Sizes 250...1000 speed sensor (ID/HD)

The speed sensor is not included in standard supply. Suitable sensors (order seperately!):


- induktive impulse detector ID (see RE 95130)

- hall effect speed sensor HD (see RE 95134)

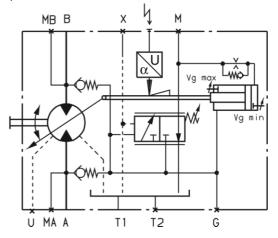



Optical swivel angle indicator (V)

The swivel position is indicated by a pin on the side of the housing. (Disassemble of the head nut necessary.) The length of the outstanding pin depends upon the position of the control lense.

If it is flush with the housing the motor is at zero. At max. swivel $V_{g max}$ the length of the pin is 8 mm (Display is still possible if the protective cap is removed).

Sizes 250...1000 (Example: A6VM...HD, starting position V_g max)



A5	A1	A1	A5	
Electro	nical swiv	el angle i	ndicate	or (E)

The motor position is fed back here by means of an inductive positional transducer. It converts the displacement of the variable unit into an electrical signal.

The swivel position may be further processed by means of this signal, eg. it may be fed to an amplifier card. Inductive positional transducer type IW9–03–01

Sizes 250...1000 (Example: A6VM...HA, starting position V_{g} $_{min})$

Size A1

250	136,5	256	73	238	11	5	250	182
355	159,5	288	84	266	11	8	355	205
500	172,5	331	89	309	11	3	500	218
1000	208,5	430	114	402	11	3	1000	254

*) space required to remove protective cap

Size

A1

A2

A3

Α4

A6

A5*)

A6VM107HA1U2/63W-VZB020A 9605644

Preferred Types

Туре	ldent-No.	Туре	Ident-No.
A6VM28DA1/63W-VZB020B	9604014	A6VM140DA1/63W-VZB020B	9603559
A6VM28DA2/63W-VZB020B	9604015	A6VM140DA3/63W-VZB020B	9610778
A6VM28EP1/63W-VZB020B	9604063	A6VM140EP2/63W-VZB020B	9605666
A6VM28EZ1/63W-VZB020B	9604250	A6VM140EZ2/63W-VZB020B	9610772
A6VM28HA1/63W-VZB020A	9604219	A6VM140HA1/63W-VZB020A	9610774
A6VM28HA1R2/63W-VZB020A	2036653	A6VM140HA1R2/63W-VZB020A	9610776
A6VM28HA1U2/63W-VZB020A	9604665	A6VM140HA1U2/63W-VZB020A	9605670
A6VM28HD1/63W-VZB020B	9603912	A6VM140HD1/63W-VZB020B	9605664
A6VM28HZ1/63W-VZB020B	9604249	A6VM140HZ1/63W-VZB020B	9605648
A6VM55DA1/63W-VZB020B	9604017	A6VM160DA1/63W-VZB020B	9604026
A6VM55DA2/63W-VZB020B	9604018	A6VM160DA3/63W-VZB020B	9604794
A6VM55EP1/63W-VZB020B	9604065	A6VM160EP2/63W-VZB020B	9604072
A6VM55EZ3/63W-VZB020B	9604523	A6VM160EZ2/63W-VZB020B	9604254
A6VM55HA1/63W-VZB020A	9604223	A6VM160HA1/63W-VZB020A	9604235
A6VM55HA1R2/63W-VZB020A	2036655	A6VM160HA1R2/63W-VZB020A	2036656
A6VM55HA1U2/63W-VZB020A	9605637	A6VM160HA1U2/63W-VZB020A	9604666
A6VM55HD1/63W-VZB020B	9603911	A6VM160HD1/63W-VZB020B	9603805
A6VM55HZ3/63W-VZB020B	9604517	A6VM160HZ1/63W-VZB020B	9604252
A6VM80DA1/63W-VZB020B	9604020	A6VM200DA1/63W-VAB020B	9604029
A6VM80DA2/63W-VZB020B	9604021	A6VM200DA3/63W-VAB020B	9610785
A6VM80EP1/63W-VZB020B	9604067	A6VM200EP2/63W-VAB020B	9604074
A6VM80EZ3/63W-VZB020B	9604522	A6VM200EZ2/63W-VAB020B	9604257
A6VM80HA1/63W-VZB020A	9604227	A6VM200HA1/63W-VAB020A	9604239
A6VM80HA1R2/63W-VZB020A	9610911	A6VM200HA1R2/63W-VAB020A	9610792
A6VM80HA1U2/63W-VZB020A	9605641	A6VM200HA1U2/63W-VAB020A	9604667 9603913
A6VM80HD1/63W-VZB020B	9603720	A6VM200HD1/63W-VAB020B	9604255
A6VM80HZ3/63W-VZB020B	9604516	A6VM200HZ1/63W-VAB020B	9004233
	9604023		978 736
A6VM107DA1/63W-VZB020B	9604023	A6VM250EP2D/63W2-VZB020B	983 132
A6VM107DA2/63W-VZB020B	9604024	A6VM250HD2D/63W1-VZB020B	999 277
A6VM107EP1/63W-VZB020B	500-005	A6VM250HZ/63W2-VZB027B	
A6VM107EZ3/63W-VZB020B	9604521		
A6VM107EZ4/63W-VZB020B	9611133		
A6VM107HA1/63W-VZB020A	9604231		
A6VM107HA1R2/63W-VZB020A	2011699		

A6VM107HD1/63W-VZB020B	9603804

A6VM107HZ3/63W-VZB020B 9604515

Sizes 28...200: production plant Elchingen Sizes 250...1000: production plant Horb

Please state type and ident-no. when ordering

40/40 Bosch Rexroth AG | Mobile Hydraulics

A6VM | RE 91 604/05.99

Bosch Rexroth AG Mobile Hydraulics Product Segment Axial Piston Units Elchingen Plant Glockeraustrasse 2 89275 Elchingen, Germany Telephone+49 (0) 73 08 82-0 Facsimile +49 (0) 73 08 72 74 info.brm-ak@boschrexroth.de www.boschrexroth.com/brm

Horb Plant An den Kelterwiesen 14 72160 Horb, Germany Telephone+49 (0) 74 51 92-0 Facsimile +49 (0) 74 51 82 21 © 2003 by Bosch Rexroth AG, Mobile Hydraulics, 89275 Elchingen All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.